ディジタル信号処理
12. FIRディジタルフィルタ新着!!

ディジタルフィルタの構成 ディジタル信号処理の分野で、ディジタルフィルタは基本的で重要な技術で、様々な領域で活用されている。ディジタルフィルタは、特定周波数範囲の信号の伝送や除去などアナログフィルタと同じ目的で使用される […]

続きを読む
ディジタル信号処理
11. 離散フーリエ変換(DFT)

離散フーリエ変換(Discrete Fourier Transform:DFT)は、離散的な信号やデータ列を周波数成分に変換する手法である。これは、信号処理やデータ解析の分野で広く使用されている。離散フーリエ変換は、離散 […]

続きを読む
ディジタル信号処理
10. 離散時間システムの周波数特性

※離散時間システムの周波数応答(ディジタル制御)も参考にどうぞ。 LTIシステムのインパルス応答を\(h(n)\)として、そのシステムに複素正弦波数列の入力\(x(n) = e^{j n \omega T}\)を印可した […]

続きを読む
ディジタル信号処理
9. 離散時間システムの基本構成

離散時間システムを記述する式(1)に示す差分方程式から分かるように、入力\(x(n)\)に対する出力\(y(n)\)の計算は、積和演算を実行すればよい。$$y(n) = \sum_{k=0}^{M} a_k x(n-k) […]

続きを読む
ディジタル信号処理
8. 伝達関数と差分方程式

離散時間システムの伝達関数は、入力と出力の関係を\(Z\)領域で表現する関数である。これは、連続時間システムの伝達関数の概念と同様であるが、\(Z\)変換を用いて離散時間信号を扱う。離散時間システムの伝達関数は、入力と出 […]

続きを読む
ディジタル信号処理
7. 離散時間システムのインパルス応答

離散時間システムとは、時間の経過とともに変化する状態を、離散的な時間間隔で表現するシステムである。離散時間システムでは、連続時間システムとは対照的に、時間の経過を連続的な値ではなく、サンプリングされた値で扱う。離散時間シ […]

続きを読む
ディジタル信号処理
6. Z変換

Z変換(Z-transform)は、離散時間信号を解析するための数学的手法であり、特に制御工学や信号処理などの分野でよく使用される。Z変換は、離散時間信号を複素平面上のZ領域に変換することで、システムの動作や応答を分析す […]

続きを読む
ディジタル信号処理
※ラプラス変換、Z変換表

連続時間信号\(x(t)\)に対するラプラス変換、離散時間信号に対する\(Z\)変換の表を示す。離散時間信号は、\(x(t)\)をサンプリング周期\(T\)でサンプリングした信号とする。また、以下の表で\(a=e^{-\ […]

続きを読む
ディジタル信号処理
5. 連続時間信号の標本化

連続時間信号の標本化とは、時間軸上で連続的に変化する信号を、一定間隔で値を取り出すことで離散的な信号に変換する処理である。これは、アナログ信号をディジタル信号に変換する最初のステップであり、信号処理やコンピュータでの処理 […]

続きを読む
ディジタル信号処理
4. LTIシステム

LTI(Linear Time-Invariant)システムとは、線形時不変システムの略称で、線形性と時不変性を満たすシステムを指し、以下の特徴を持つ。・線形性(Linearity):入力信号の線形結合が、出力信号におい […]

続きを読む
ディジタル信号処理
3. フーリエ変換

フーリエ変換は、時間領域(または、空間領域)で表現された信号や関数を、周波数領域に変換する数学的手法である。時間領域とは、信号が時間の経過とともにどのように変化するかを表す領域であり、周波数領域とは、信号がどのような周波 […]

続きを読む
ディジタル信号処理
2. フーリエ級数

フーリエ級数とは、周期関数を三角関数の和で表す数学的な方法である。ここで、周期関数とは、一定の周期で繰り返す関数を指す。工学的には、フーリエ級数は複雑な形状の周期信号を、単純な三角関数の重ね合わせで表現することができる。 […]

続きを読む
ディジタル信号処理
1. ディジタル信号

信号はその性質や時間的な変化に基づいてさまざまな方法で分類できる。ここでは、ディジタル信号処理に関連した信号の分類を示す。1)アナログ信号とディジタル信号・アナログ信号: 連続的な時間と連続的な振幅を持つ信号。例えば、ア […]

続きを読む