ディジタル制御
4-1. 連続時間システムの離散化(演習)

連続時間伝達関数の離散時間伝達関数への変換 (1)\(G(s) = \frac{K}{s}\)を0次ホールドを含む離散化システムに変換する。$$G(z) = (1 - z^{-1})\mathcal{Z}\left\{\ […]

続きを読む
ディジタル制御
2-1. 留数定理によるZ変換

※以下、虚数単位に「\(j\)」を使用する。 留数定理 留数定理は、特異点の周りで関数を積分する際に、その点における関数の「留数」(Residue:何かが取り除かれた後に残っているもの、という意味)を利用するものである。 […]

続きを読む
ディジタル制御
1-1. 離散時間制御系の構成(演習)

連続時間システムから離散時間システムへの変換 連続時間システムが微分方程式$$\frac{dy}{dt} = \alpha y + \beta u \;\; \cdots (1)$$で与えられるとき、このシステムをディジ […]

続きを読む
基礎電磁気学
8. 電流と磁界

電流と磁界には密接な関係がある。導線などに電流が流れると磁界が発生し、逆に磁界変化によって起電力が発生し、電流が流れる。この関係を理解することは、電気工学などの応用分野で非常に重要である。・電流による磁界:導線に電流が流 […]

続きを読む
電気数学
2. 行列式(線形代数)

行列式とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には、線型変換に対して線形空間の拡大率ということができる。つまり、行列式は、行列がどれくらい空間を「 […]

続きを読む
電気数学
1. 行列と行列の演算(線形代数)

線形代数は、ベクトル空間と線形写像に関する理論と応用を扱う。制御工学、特に現代制御理論では重要な数学ツールとなっている。線形代数は、次の概念や操作を含む。1.ベクトルとベクトル空間:ベクトルは数値の集合であり、方向と大き […]

続きを読む
基礎電磁気学
7. 磁気の性質

磁気の基本的な性質は、磁石が互いに引き合ったり反発したりする現象に見られる。磁石にはN極とS極があり、異なる極同士は引きつけ合い、同じ極同士は反発する。この性質は、磁性と呼ばれ、磁場に反応する性質を指す。磁気の性質は以下 […]

続きを読む
基礎電磁気学
6. キャパシタ(コンデンサ)

静電容量は、電子部品のキャパシタ(コンデンサ)が蓄えられる電荷の量を表す指標で、単位はファラッド\([F]\) である。\(1\;F\) は \(1\:C\)の電荷を\(1\;V\) の電圧で蓄えることができることを意味 […]

続きを読む
基礎電磁気学
5. 電流、導体、誘電体

電流とは、電気が導体などの経路を通って流れる様子を指す。具体的には、電荷を帯びた粒子が連続的に動く現象である。電流の大きさは、1秒間にどれだけの電荷が移動するかで決まる。電流の単位は\([A]\)で、\(1\;[s]\) […]

続きを読む
基礎電磁気学
4. 電位、電圧(電位差)

電位とは、ある地点における電荷の持つエネルギーのことを指す。電位は、基準点における電位を0と定義し、その基準点からの距離と電荷によって決まる。電位の単位はボルト\( [V]\)であり、\(1\;[V]\)は\(1\;[C […]

続きを読む
基礎電磁気学
3. 電気力線と電束、ガウスの定理

電界におけるガウスの定理は、電荷と電場の関係を表す重要な法則である。この定理は、「閉曲面を貫く電気力線の総量は、その閉曲面で囲まれた電荷の総量に比例する」という内容を表している。ガウスの定理は、電荷と電場がどのように関係 […]

続きを読む
基礎電磁気学
2. 電界と電界の強さ

電界(電場)とは、電荷に力を及ぼす空間の性質の一つである。電荷の周りには電界が存在し、電荷に力を与える。電界は、ベクトル量であり、大きさと方向を持つ。電界の大きさは、その点における単位電荷が受ける力と、その電荷の電気量の […]

続きを読む
基礎電磁気学
1. 静電力

静電力は、帯電した物体同士に働く力である。帯電とは、物体に電荷と呼ばれる電気的な状態が蓄積されることを指す。電荷には正と負があり、同じ極性の電荷は反発し合い、異なる極性の電荷は引き付け合う。静電力は、私たちの身の回りで様 […]

続きを読む
ディジタル信号処理
13. FIRフィルタの設計

FIRフィルタの設計では、フーリエ級数展開法で求めたインパルス応答に窓関数を掛ける窓関数法が代表的である。窓関数法によるフィルタの設計手順は、以下である。1)仕様決定:・フィルタの種類(LPF、HPF、BPF、BRFなど […]

続きを読む
ディジタル信号処理
12. FIRディジタルフィルタ

ディジタルフィルタの構成 ディジタル信号処理の分野で、ディジタルフィルタは基本的で重要な技術で、様々な領域で活用されている。ディジタルフィルタは、特定周波数範囲の信号の伝送や除去などアナログフィルタと同じ目的で使用される […]

続きを読む
システム制御工学
24. 極配置法(演習)

式(1)で表記する1入力\(n\)次元定係数線形システムを制御対象とする。$$\dot{x}(t) = A x(t) + b u(t) \\ y(t) = c x(t) \;\;\cdots \cdots (1)$$式( […]

続きを読む
システム制御工学
23. 可観測性(演習)

※可観測性の解説は、11. 可観測性 、9. 対角正準形 を参照願います。 システムを$$\dot{x}(t) = A x(t) + b u(t) \\ y(t) = cx(t) \;\; \cdots \cdots ( […]

続きを読む
システム制御工学
22. 可制御性(演習)

※可制御性の解説は、10. 可制御性、12. 可制御正準系 を参照願います。※固有値、固有ベクトルの計算手順の詳細については、固有値と固有ベクトルの計算 を参照願います。 座標変換 1入力1出力\(n\)次元システム $ […]

続きを読む
システム制御工学
21. システムの応答(演習)

制御対象を入力\(m\)、出力\(l\)の\(n\)次元の線形定係数システムとする。$$\dot{x}(t) = A x(t) + B u(t) \;\cdots \cdots (1) \\ y(t) = C x(t)\ […]

続きを読む
システム制御工学
20. システムの状態方程式(演習)

システムの特性を以下の状態方程式(式(1))、出力方程式(式(2))で表現する。$$\dot{x}(t) = A x(t) + B u(t) \;\;\cdots \cdots (1)\\y(t) = C x(t) \; […]

続きを読む